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random networks, gelation and elasticity 
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Park, Colchester CO4 3SQ, UK 
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Abstract. The analogy between the branching model of electrical conductivity and the 
graph theoretical treatment of f-functional polycondensation in chemistry is quantified by 
an application of the concept of elastically active network chains in rubber theory to 
random resistor networks. 

The analogy between the branching model of electrical conductivity in random 
networks and the graph theoretical treatment of f-functional random poly- 
condensation (Flory 1941) in chemistry has been drawn by a number of workers, 
notably Stinchcombe (1973), Stauffer (1976) and de Gennes (1976) to whose exposi- 
tions the reader is referred. In essential detail both models have connection with 
others, especially the percolation model, and all can be described in terms of the 
probability a that an edge linking two vertices in a graph or a lattice exists, or for 
example in an initially saturated random resistor network, that all but a fraction a of 
resistors have been removed. The ‘critical conversion’ ac is given by equation (1). 

1 
CYc=- 

f-1 
where f is the ‘functionality’ or maximum degree of a vertex. 

Stauffer (1976) remarked that ‘presumably the elasticity problem is similar to the 
percolation evaluation of electrical conductivity’. The purpose of this paper is to 
quantify the quite rigorous physical analogy within the framework of the general 
attack of one-dimensional (‘graph-like state’) models. 

More generally, the result of this quantification tends to reverse the usual view of 
the embedding lattice graphs (i.e. one-dimensional structures) in spaces of more than 
one dimension for treating amorphous systems. The view that f-functional poly- 
condensation is a deficient model for treating critically branched materials, because it 
is a purely one-dimensional theory, is not acceptable in the light of experiment, as will 
be explained below; equally, the formulae based on integral transforms for two- or 
three-dimensional models (Stinchcombe 1973, 1974) for electrical conductivity are 
shown to fit computer experiments (Kirkpatrick 1973) no better than the much 
simpler one-dimensional formulae, based on combinatorial algebra, and ‘classical’ 
rescaling. As exemplified throughout this series, we regard the use of an embedding 
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space as a part of certain models, but not as an a priori part of the reality the models 
attempt to fit. Mackenzie (1976) was surely right in suggesting that discrimination 
between models using continuum and discrete space lies in experimental work. 

The elastic modulus of a polycondensate gel is very satisfactorily assumed by the 
model to be proportional to the number of Scanlan-Case (Scanlan 1960, Case 1960) 
elastically active network chains (EANC). An EANC is defined as a chain segment lying 
between two active branch points. An active branch point is one from which at least 
three independent paths can be traced to infinity on the infinite Cayley tree (Bethe 
lattice graph). One of these paths always goes from the branch point along the EANC 
itself; the others-at least two in number-radiate outwards to infinity. 

The randomly branching electrical model likewise should assume that conductivity 
is proportional to the number of ‘EANC’ defined in terms of the graph in the same way. 
This is readily seen by imagining the graph embedded in three-dimensional space, 
though the calculation of the number of EANC itself takes no cognisance of this 
embedding. Thus the number of EANC of the embedded random network crossing (an 
odd number of times) a cross section of a unit cube is proportional to the number of 
EANC in the cube. Each EANC crossing the cross section carries a finite current in 
parallel across the section. This is because the statistical theory of branching processes 
(cf Dobson and Gordon 1965) shows that if a point is connected by at least two 
non-overlapping outward paths to the surface of the specimen, there will be (with 
overwhelming probability) a great multitude of further connections to the relevant 
end face of the cube, as these paths branch out into more (partly overlapping ones), 

The Dobson-Gordon (1965) method enables the calculation of the number Ne of 
EANC per repeat unit (i.e. per vertex of the lattice graph) to be made, using the 
concept of the tie generating function. The result obtained is given as equation (2): 

N e = 3 a ( l - ~ ) * ( 1 - P ) / 2 ,  (2) 
where a is the conversion parameter, U is the extinction probability (the probability 
that a link chosen at random in the statistical forest leads, in one chosen direction to a 
finite sub - t r ee t and  is given as the lowest positive root of 

U = (1 -a +all)’-’ (3 1 
and 

P E ( f -  l)ao/(l -a +au). (4) 

This result has been tested experimentally against data in a number of weak gel 
networks, and shown to give good agreement (Gordon and Ross-Murphy 1975). The 
treatment as given above is for tree-like networks only (absence of cycles)-but recent 
work shows that by appropriate rescaling it can give good agreement even in the 
presence of cycles. The rescaling strategy adopted is widely applied (DuSek et a1 1978, 
DuSek and Vojta 1977). Let ab be the observed critical value of a and a, that 
predicted from the condition of equation (1) (generally a; >ac), then we rescale in 
terms of the derived variable a/ab, and assume the results for this new variable are the 
same as predicted theoretically in terms of the variable ala, (DuSek et a1 1978). 

Figures l(a) and (6) present competitive fittings of well known computer data by 
Kirkpatrick (1973) on the relative conductivity of random resistor networks against 
the fraction a of resistors present. 

The comparison is between the calculations of Stinchcombe (1973) (curve A), 
using his integral transform equations (7) and (8), and equation ( 5 )  of this paper 
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Figure 1. Kirkpatrick's Monte Carlo data for relative conductivity U' in a random resistor 
network on: (a) a cubic lattice; and (b) a square lattice; plotted against U the degree of 
conversion. A and 0: see Kirkpatrick (1973) for details. Broken curve, calculation of 
Stinchcombe (1973); full curve, calculated from equation (5).  

denoted by curve B. Figure l ( a )  shows the results for a cubic lattice, figure l(b) for the 
square lattice, and figures 2(a) and (b) respectively show the improvement in fit on 
rescaling. These correspond to Stinchcombe's figures 2 and 3. The rescaled discrete 
graph-like state calculation gives better fits than the unscaled integral transform 
calculation which attempts to cope with the effects of embedding in two or three 
dimensions. In fact, the results suggest that the coordination number of the lattice 
graphs, rather than the dimensionality of the assumed embedding space, dominates 
the shapes of these curves. For discussion of the relative effects on various physical 
theories of assumed coordination numbers and assumed dimensionality, see e.g. 
Domb and Sykes (1961) and Gordon et a1 (1976). (Note that the maximum value of 
Ne per repeat unit is (Dobson and Gordon 1965) 3/2, as found by substituting CY = 1, 

Figure 2. As figure 1 except that U' is plotted against (ala:)- 1. The critical conversion 
U: was taken to be 0.255 and 0.43 on the cubic and square lattices respectively. 
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and thus o = 0, in equations (2) and (4).) In the conductivity analogue, the maximum 
value of U‘,  the relative conductivity, is defined to be unity. We therefore write 

U’ = a (1 - u)2(1 - p )  

where o and p are calculated as before from equations (3) and (4). 
Even if the results of the integral transform approximation were also rescaled, no 

worthwhile improvement in fit over the much simpler combinatorial approach (exact 
for the regular Bethe lattice graph) would result. We also note that Stinchcombe’s 
figure 1 calculates probabilities relating to an unembedded graph (exactly equivalent 
to sol and gel fractions in condensation theories (Flory 1941)). The sol fraction curve 
(i.e. Stinchcombe’s R ( p ) ) ,  with z = 3, has been shown to fit admirably the thermal 
coagulation behaviour of milk (Dalgleish and Parker 1977). 

Stauffer (1976) has argued that classical calculations, i.e. from unembedded 
graphs, by Covas et a1 (1974) of the size of the largest molecule in a critically branched 
finite polycondensate sample, were incorrect by a factor of about 200. His argument 
is‘based on the assumption that such materials can be treated in terms of repeat units 
fixed at lattice sites in three dimensions, with the large bias in favour of cyclisation 
reactions which this entails. The need for monomers in dilute solutions to move about 
in order to collide is regarded as a complication from his viewpoint. However, the 
physical facts of rubber elasticity reveal the great mobility of the segments of a 
network, and chemical reactions in gels have been experimentally shown (Gordon and 
Roe 1956) to proceed with collision rates requisite for the law of mass action to apply, 
rather than to become diffusion controlled in their rate behaviour. Only if both 
colliding partners exceed a large critical size, will diffusion control prevail, although 
this still means that the reactants are moving. The growth of polycondensate mole- 
cules in critically branched materials is largely mediated by collisions in which one 
partner is quite small. It is not, therefore, surprising that critical exponents derived 
from scaling theories based on multi-dimensional continua have not, to our know- 
ledge, been verified by gelation experiments. 

At the same time, constant progress is being made in refining models based on 
scaling regular lattices, e.g. by Young and Wallace at Oxford. We are grateful to a 
referee for pointing out that for such models the critical exponent is now known to be 
of order 1.7 (cf Stauffer 1976). Since the exponents are valid only very close to the 
critical point (cf figure 2 ( b )  where the critical exponent is 3), an experimental dis- 
crimination by conductivity measurements is a challenging task. 
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